

Daily	Tutorial	Sheet-4
-------	----------	---------

Level-1

46.(ABCD) For an isothermal process, $\Delta E = 0$, $\Delta H = 0$

$$\Delta S = nC_{p,m} ln \frac{T_2}{T_1} + nR ln \frac{P_1}{P_2} = 0$$

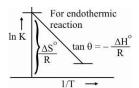
47.(D)
$$PbO_2 + Pb \longrightarrow 2PbO$$

Since, $\Delta_r G^{\circ} < 0$, hence + 2 state of lead is favourable.

$$SnO_2 + Sn \longrightarrow 2SnO_{+2}$$

Since, $\Delta_*G^{\circ} > 0$, it means forward reaction is not spontaneous.

$$2SnO \longrightarrow SnO_2 + Sn$$


$$^{+2} \longrightarrow ^{+4} 0$$

For this $\Delta_r G^{\circ} < 0$, thus +4 state of tin is favourable.

48.(B) $\Delta G^{\circ} = -RT \ln K$

or,
$$\Delta H^{\circ} - T\Delta S^{\circ} = -RT \ln K$$
 or, $\ln K = \frac{-\Delta H^{\circ}}{RT} + \frac{\Delta S^{\circ}}{R}$

Comparing with y = m.x + c ... y intercept is $\frac{\Delta S^{\circ}}{R}$

49.(D) The standard free energy change (ΔG°) is related to equilibrium constant K as

$$\Delta G^{\circ} = -RT \ln K$$
; $\Delta G^{\circ} = -2.303 RT \log K$

50.(B)
$$\therefore \Delta G^{\circ} = \Delta H^{\circ} - T \cdot \Delta S^{\circ} = -29.8 - 298 \times (-0.1) = -29.8 + 29.8 = 0$$

51.(A) The unit of entropy is $J \text{ mol}^{-1} \text{ K}^{-1}$.

52.(A) For a system in equilibrium, $\Delta G = 0$, when all the reactants and products are in the standard state [at constant temperature and pressure].

53.(A)
$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g) \Delta S^{\circ} = \sum S_p^{\circ} - \sum S_R^{\circ} = 2 \times 187 - (131 + 223) = 374 - 354 = 20 \text{ JK}^{-1} \text{ mol}^{-1}$$

54.(A) Given, $\Delta H = 31400 \text{ cal}$, $\Delta S = 32 \text{ cal K}^{-1} \text{ mol}^{-1}$, T = 1000 + 273 = 1273 K, $\Delta G = ?$

From Gibb's-Helmholtz equation

$$\Delta G = \Delta H - T \cdot \Delta S = 31400 - 1273 \times 32 = 31400 - 40736 = -9336 \, cal$$

55.(C) For spontaneous adsorption process, standard Gibb's free energy (ΔG) must be negative as well as the degree of randomness of gas molecule on the surface of solid decreases. For exothermic process, ΔH must be negative. Hence, with the help of following equation.

$$\Delta H = \Delta G + T \cdot \Delta S$$

 $T \cdot \Delta S$ is negative. Thus, during adsorption ΔS decreases.

57.(D) As we know that, $\Delta G = \Delta H - T\Delta S$

Hence, ΔG may be greater, lesser or equal to ΔH .

58.(D) For a reversible process
$$\Delta S_{\text{system}} + \Delta S_{\text{surroundings}} = 0$$

59.(A)
$$\Delta U = q + w = 0$$
 for cyclic process. **60.(A)** $|w| = P_2(V_2 - V_1) + P_3(V_3 - V_2)$